Re-evaluating the IUCN Red List status of Northwest Atlantic Leatherbacks

Bryan Wallace on behalf of the Northwest Atlantic Leatherback Working Group

20 Mar 2019 | WIDECAST Annual General Meeting | Paramaribo, Suriname

Categories: Risk of imminent Extinction Standard Criteria: all taxa

Leatherbacks: global distribution

How to ensure that Red List assessments reflect regional variation?

GLOBAL distributions and variation

→ Regional Management Units

photo: Brian Skerry

IUCN MTSG approach to Red List assessments

IUCN Definition of Subpopulation: geographically or otherwise distinct groups in the population between which there is little demographic or genetic exchange

e.g. Humpback whales, scalloped hammerhead sharks: global listing and multiple subpopulation listings; based on lots of different data types

Regional Management Units = subpopulations in RL assessments

Can be updated by Red List assessors

Background

- Status assessments: Northwest Atlantic leatherback
 - Turtle Expert Working Group (2007): abundant, stable or increasing
 - Conservation priorities portfolio (Wallace et al. 2011): Low-risk / Low-threat, 'healthy' population
 - 2013 IUCN Red List: Least Concern

How does RED LIST work?

- GOAL: evaluate risk of imminent global extinction
- Red List Criteria: all equally evaluated, all indicate relative risk of extinction
 - A: Long-term decline
 - B: Geographic range restriction
 - C: Small population size
 - D: Very small population size
 - E: Population Viability Analysis
- Approach for Criterion A:
 - Estimate 3-generation change between a past estimate and a present estimate of abundance
 - Use ~4-5 yr average of annual counts for each
 - Ignores intermediate trends
 - Assumes first counts = abundance 3-generations ago

Previous RL assessment

How was it done?

- Looked at long-term (>10 yr) trends in annual nest abundance data
- Relied heavily on TEWG data, including historical data collected using inconsistent monitoring
- Weighted overall, subpopulation trend by relative abundance of each site
- Historical abundance: ~25,000 nests/year
- Present abundance (through 2010): ~45,000 nests/year
 - 80% increase over '3-generations'

UPDATED RL assessment

How was it done?

- Looked at long-term (>10 yr) trends in annual nest abundance data
- Relied heavily on TEWG data data collected using consistent methods
- Observed, not modeled
- Weighted overall, subpopulation trend by relative abundance of each site

Stock	Site	Past Estimate 1*		Recent Estimate	
		Years	Value	Years	Estimate to 2017
Guianas-Trinidad	Suriname (Galibi, Matapica)	1999-2003	9,316	2013-2017	2,419
	French Guiana (Awala Yalimapo)	1986-1990	28,973	2013-2017	424
	French Guiana (Cayenne)	1999-2003	1,304	2013-2017	3,741
	Guyana	1989-1993	173	2013-2017	228
	Trinidad (Matura)	2006-2010	10,203	2013-2017	7,876
	Trinidad (Fishing Pond) #	2009-2012	5,135	2013-2017	
	Trinidad (Grand Riviere) #	2009-2012	10,951	2013-2017	
	Tobago #	2009-2013	410	2013-2017	
	Grenada	2002-2006	339	2013-2017	847
	Venezuela (Cipara)	2000-2004	100	2012-2015	63
	Venezuela (Querepare)	2002-2006	68	2013-2017	117
	Guianas-Trinidad TOTAL		50,476		15,715

Stock	Site	Years	Change through 2017
Guianas-Trinidad	Suriname: Galibi, Matapica	1999-2017	-0.74
	French Guiana: Awala Yalimapo	1986-2017	-0.99
	French Guiana: Cayenne	1999-2017	1.87
	Guyana	1989-2017	0.32
nas-	Trinidad: Matura	2006-2017	-0.23
Guia	Grenada	2003-2017	1.50
	Venezuela: Cipara	2000-2015	-0.37
	Venezuela: Querepare	2002-2017	0.72
	Guianas-Trinidad TO	-0.69	

Recent RL assessment

What happened?

- It's real: Actual declines in the past decade (see trend assessment results)
- It's the methods: Difference in how some historical estimates were calculated
- Key: French Guiana estimates
 - Previous assessment used data going back to 1967, and only had modeled estimates through 2005, had to extrapolate to 2010
 - Current assessment used actual count data from index sites over time, but between 1986 and 2017 only (reliable monitoring effort)

What now?

- Went through committee review, IUCN Marine Turtle
 Specialist Group member review
- Now in review with IUCN; possible official update to Red List (in March?)

What the IUCN Red List is, and what it is not

Also: the role of IUCN Red List Assessments in sea turtle conservation

P. Casale, R. Mast, B. Wallace
IUCN Marine Turtle Specialist Group

What the RL is and what it is not: Extinction risk vs conservation needs

Categories provide semiquantitative indices of extinction risk

Least Concerned

| Vulnerable | Endangered | Critically | Endangered |

What the RL is and what it is not: Extinction risk vs conservation needs

'Least concern' is technically correct in that context

What the RL is and what it is not: Extinction risk vs conservation needs

BUT: what about taxa that are under threat, are declining, etc., or those whose non-threatened status is entirely conservation dependent?

The big misunderstanding

Critically Endangered... Least Concern!

Protect turtles you must!

Red List is about imminent extinction risk,
NOT conservation needs

Use the Force... for good?

- How should we communicate about Red List?
- Turn away from the Dark Side:
 What are different approaches to assessing sea turtle status?
- How conservation-dependent are sea turtles, really?

Questions?

GLOBAL distributions and variation

+ RMUs

+ CPP = status assessments at 'population' levels